Recognizing Handwritten Characters with Local Descriptors and Bags of Visual Words

نویسندگان

  • Olarik Surinta
  • Mahir Faik Karaaba
  • Tusar Kanti Mishra
  • Lambert Schomaker
  • Marco Wiering
چکیده

In this paper we propose the use of several feature extraction methods, which have been shown before to perform well for object recognition, for recognizing handwritten characters, These methods are the histogram of oriented gradients (HOG), a bag of visual words using pixel intensity information (BOW), and a bag of visual words using extracted HOG features (HOG-BOW). These feature extraction algorithms are compared to other well-known techniques: principal component analysis, the discrete cosine transform, and the direct use of pixel intensities. The extracted features are given to three different types of support vector machines for classification, namely a linear SVM, an SVM with the RBF kernel, and a linear SVM using L2-regularization. We have evaluated the six different feature descriptors and three SVM classifiers on three different handwritten character datasets: Bangla, Odia and MNIST. The results show that the HOG-BOW, BOW and HOG method significantly outperform the other methods. The HOG-BOW method performs best with the L2-regularized SVM and obtains very high recognition accuracies on all three datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition

The use of machine learning and computer vision methods for recognizing different plants from images has attracted lots of attention from the community. This paper aims at comparing local feature descriptors and bags of visual words with different classifiers to deep convolutional neural networks (CNNs) on three plant datasets; AgrilPlant, LeafSnap, and Folio. To achieve this, we study the use ...

متن کامل

Combination of multiple classifiers for handwritten word recognition

Because of large shape variations in human handwriting, recognition accuracy of cursive handwritten word is hardly satisfying using a single classifier. In this paper we introduce a framework to combine results of multiple classifiers and present an intuitive run-time weighted opinion pool (RWOP) combination approach for recognizing cursive handwritten words with a large size vocabulary. The in...

متن کامل

Recognizing Degraded Handwritten Characters

In this report, a character recognition system is proposed that handles degraded manuscript documents which were discovered at the St. Catherine’s Monastery. In contrast to state-of-the-art Ocr systems, no early decision, namely the image binarization, needs to be performed. Thus, an object recognition methodology is adapted for the recognition of ancient manuscripts. Therefore, interest points...

متن کامل

XU AND MORDOHAI: EXPRESSION RECOGNITION USING BAGS OF MOTION WORDS 1 Automatic Facial Expression Recognition using Bags of Motion Words

We present a fully automatic approach for facial expression recognition based on a representation of facial motion using a vocabulary of local motion descriptors. Previous studies have shown that motion is sufficient for recognizing expressions. Moreover, by discarding appearance after optical flow estimation, our representation is invariant to the subjects’ ethnic background, facial hair and o...

متن کامل

A Search Engine for Handwritten Documents

The design and functionality of a versatile search engine on handwritten documents is described. Documents are indexed using global image features, e.g., stroke width, slant, word gaps, as well local features that describe shapes of characters and words. Image indexing is done automatically using page analysis, page segmentation, line separation, word segmentation and recognition of characters ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015